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version 1.1, written in Mathematica 12

The Mathematica package PQM.m [5] provides a tool for calculating the immersed
curve invariant from [2] for any 4-ended tangle in a Z-homology 3-ball. This manual
only describes how to use the main functionalities of this package. Help with more
obscure functions included in PQM.m can be displayed in a notebook in the usual
way by calling

?ObscureFunction
(which gives a description of ObscureFunction) or

??ObscureFunction

(for both a description and the actual definition). This manual should be read
alongside the notebooks [3, 4, 6], where we compute the invariants for three basic
examples. At the end of this manual, we showcase some outputs for these examples,
see Figures 3, 5 and 6.

1. Basic Usage

1.1. Input preparation. The Mathematica package PQM.m implements the al-
gorithm from [2, Corollary 5.7], which allows us to compute peculiar modules com-
binatorially from nice Heegaard diagrams. So, given a Heegaard diagram for a
4-ended tangle in a Z-homology 3-ball, we first need to niceify it using Sarkar and
Wang’s nicefication algorithm from [1]. How we do this can have a significant im-
pact on the run time of the computation for large diagrams, so one should keep the
number of generators as low as possible. Once, we have a nice diagram, we label
the intersection points of α-curves and β-curves by integers (1, 2, 3, . . .). Similarly,
we label the regions in the Heegaard diagram (1, 2, 3, . . . ). Finally, we enumerate
the α-arcs and α-curves and, separately, all β-curves. For examples, see Figures 2
and 4.

1.2. Backups. At any stage throughout the program, one can easily make backups
of preliminary results via

DumpSave[BackupFilePath <> "_AfterCancellation.mx", "Global‘"];

For this, we need can specify a path BackupFilePath to the directory where the
backups should be stored. They can then be recalled for example like this:

<< (BackupFilePath <> "_BeforeCancellation.mx");
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1.3. Input data. We start by loading the package [5] as follows:

<< PQM.m

Next, we enter the following data into the notebook. For each calculation, a separate
notebook should be used.

regionsInput is a matrix with five columns and a row for each region of the
nice Heegaard diagram. The first entry of the ith row should be equal to
i. The other four entries of the ith row are the vertices of the ith region,
ordered by their boundary orientation. Our orientation conventions are as
in [Zib17]: The normal vector field, determined by the right hand rule,
points into the plane, so the boundary orientation is clockwise. We start
with a vertex which is the start of a segment of an α-curve in the boundary
of the region. For bigons, the last two entries remain empty, ie occupied by
the symbol �.

Note: The first column is not used anywhere in the program, it only helps
a human being to translate between the picture of the Heegaard diagram
and the Mathematica notebook.

alphasInput is a table whose rows are indexed by the α-curves. Again, the
first entry should be the index of the curve. The second is a list of all
intersection points on this curve.

Note: The order of the intersection points is irrelevant.
betasInput is a table whose rows are indexed by the β-curves. Again, the

first entry should be the index of the curve. The second is a list of all
intersection points on this curve.

Note: The order of the intersection points is irrelevant.
cancellationSortListInput is a table of intersection points with two

columns, so each row corresponds to a pair of intersection points. This
table has an effect on the order of the generators and is important for
the initial cancellation after computing the invariant. Usually, we start
with a Heegaard diagram which is not necessarily nice and then niceify
it using finger moves, thereby creating lots of new intersection points and
generators. In the initial cancellation step, the program attempts to cancel
such generators, thereby reversing the effect of niceification. The order in
which this is done is determined by the order of the generators, and this,
in turn, is determined by cancellationSortListInput. So the pairs of
intersection points should be those that can be removed by a reversed fin-
ger move. The order of the intersection points for each pair is the same
as for regionsInput, using the bigon which connects these two points and
which is removed by the reversed finger move. This bigon accounts for the
identity component in the differential which the program will attempt to
cancel.

alphaArcs is a table whose four rows correspond to the four sites a, b, c and
d of the tangle, as indicated by the entries of the first column. The second
entry in each row is a list of all intersection points for the corresponding
site.

Note: The first column should not be changed.



MANUAL FOR PQM.M 3

basepointRegions is a table with four columns. The entries of the first
column are indices of regions containing the basepoint labelled by the cor-
responding entries of the second column, namely either p or q.

Note 1: Do not use any other variables; in particular, do not use p or q
with subscripts such as p1 or q4.

Note 2: In the very special case that there are multiple basepoints in
this region, take a suitable power of p or q.

The third column corresponds to the Alexander grading; entries are
lists of length equal to the number of colours in the tangle, such that
the ith entry of the list corresponds to the ith colour. A basepoint of an
open (closed) strand leaving/entering the 3-manifold should be recorded as
+1/−1 (+2/−2) for the corresponding colour. The entries of the fourth
column should be −2 (−4) for each basepoint of an open (closed) strand it
contains. This information is used for the computation of the δ-grading.

multiplicity0Regions is a table with four columns. The entries of the first
column are indices of regions whose multiplicity in each domain is 0. The
second entry is a list of oriented elementary β-segments (ie pairs of intersec-
tion points) along the boundary of the domain. The orientation conventions
are as in regionsInput.

Note: Any β-segment which lies in the interior of the domain should be
recorded once in each direction.

The third column corresponds to the Alexander grading; entries are
lists of length equal to the number of colours in the tangle, such that
the ith entry of the list corresponds to the ith colour. A basepoint of
an open (closed) strand leaving/entering the 3-manifold should be recor-
ded as +1/−1 (+2/−2) for the corresponding colour. The entries of the
fourth column should be 4·(Euler measure of region) plus −2 (−4) for each
basepoint of an open (closed) strand it contains. This information is used
for the computation of the δ-grading.

1.4. Verifying the input data. Before we start the actual calculation, we should
make sure that the input data that we have entered is consistent and does indeed
correspond to our Heegaard diagram. At the end of the cell containing the basic
input data above, we call Step1Preparation. This returns a list of results of auto-
mated sanity checks and some additional outputs, which one should check manually.
It returns the total number of nice regions (NR), the number of intersection points
between α- and β-curves (NI). It also prints lists named 0 vertices, +1 vertices,
etc, which partition the set of intersection points into five subsets as follows. An
intersection point is in <n> vertices if the sum of unlabelled regions (ie those
adjacent to basepoints) in the four quadrants around it equals n, where each re-
gion contributes as follows: Walking around an intersection point in anticlockwise
direction, an unlabelled region that we enter through a β-curve counts as +1, one
that we exit through a β-curve as −1.

1.5. Running a calculation. Once we have convinced ourselves that the input
data is correct, we run the program in several separate steps by evaluating
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Step2Generators,
Step3Domains,
Step4Gradings,
Step5Differentialsand
Step6Cancellation.

Like Step1Preparation, these are modules defined in the package [5] which group
together blocks of code that compute the various components of the invariant. Each
step might give some further feedback, such as the number of generators in each
site or the number of domains. Unless there are error messages, one may safely
ignore these messages.

1.6. Cancellation. After calling Step6Cancellation, we run

CancellationData = Cancellation[differentials, generators, 1];

The CancellationData is a list of two elements, the first of which contains the
data for the differentials of the peculiar module after cancellation and the second
contains the data for the generators of the peculiar module after cancellation.

1.7. Post-Processing. We finally run Step7PostProcessing. This loads tools for
displaying peculiar modules graphically and for finding the corresponding immersed
curve invariants.

GenTableWithIdems[gens] displays a list of generators gens, ordered by
idempotents.

DSquared0Q[maps] verifies if the differential maps satisfies the relation d2 = 0.
ShowGraph[maps,gens,VertexLabelSwitch:1,EdgeLabelSwitch:1,pos:0,

CoordList:Automatic] draws a graphical representation of maps. gens is
the underlying set of generators with differentials maps.
(1) The optional parameter VertexLabelSwitch can be set to 0 to sup-

press any labelling of vertices, 1 (default) to show the generator index
or 2 to give full details on generators.

(2) The optional parameter EdgeLabelSwitch can be set to 0 to suppress
any labelling and orientation of edges or 1 (default) to show both.
Note that the edges are dashed iff they correspond to differentials
along powers of q; this agrees with the conventions in [2].

(3) The optional parameter pos is an integer by default, in which case
all generators are shown; alternatively, pos can be a list of indices of
generators in gens, in which case only the full subgraph spanned by
these generators is shown.

(4) Finally, the optional parameter CoordList can be set to a list of co-
ordinates for all vertices of the displayed graph. If no such coordinate
list is specified, SpringElectricalEmbedding is chosen as the pre-
ferred style.

DotGrid[gens,subset:0,alexstart:3] displays the generators and their
gradings; the first two Alexander gradings (usually those for the two open
strands) are shown graphically in terms of their position in a grid: t1 in-
creases from top to bottom in steps of 1

2 , t2 increases from left to right in
steps of 1

2 . The generators are shown as dots whose colour corresponds to
the four sites of the tangle. The index of the generator is shown in the
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dot. A label above the generator shows the δ-grading along with any other
Alexander gradings. DotGrid takes three optional parameters:
(1) The first can be used to display only a subset of generators, by spe-

cifying a list of corresponding generator indices.
(2) The second parameter can be used to vary the number of Alexander

gradings. Usual values are
(a) 0 (show no Alexander gradings),
(b) 1 (show all Alexander gradings),
(c) 3 (default: show all Alexander gradings except the first two),
(d) −1 (collapse all Alexander gradings),
(e) a list of ±1s as in CollapseAlexGradings to reverse some ori-

entations before collapsing.
(3) The third parameter can be used to show generators in the same grad-

ings as distinct dots labelled by their indices (0: default), or as single
dots with multiplicities without any indices (1).

SimplifyPQM[maps,MaxIterations:200] performs a sequence of homotopies
by alternatingly simplifying the complex with respect to the variables p and
q, using the function SeparateAllDifferentials. The iteration termin-
ates either if the complex becomes loop-type (see: CheckIfLoopType), or
after MaxIterations iterations. Since a pseudo-random function is invoked
by SeparateAllDifferentials, the number of iterations to put a complex
in loop-type position might vary, as well as the output, if the complex is
not in loop-type position.

ShowResult[maps,gens,switch:’all’] displays the generators arranged as
in DotGrid for each supported Alexander grading corresponding to the
colours of closed components along with the complex, sorted into connected
components. The complex can be suppressed by setting the third optional
parameter to gens.

2. Examples









2m
+

12n

...

t1 t2

t1 t2

Figure 1. The pretzel
tangle from Examples 2.1
and 2.2

In [2, section 6.3], the peculiar modules of the
(2n,−(2m + 1))-pretzel tangles from Figure 1 are
computed for all n,m > 0. We can now use PQM.m to
easily confirm these calculations for fixed n and m.

Example 2.1 ((6,−9)-pretzel tangle; n = 3, m = 4).
A nice Heegaard diagram for the (6,−9)-pretzel
tangle is shown in Figure 3, which is a special case
of the Heegaard diagram from [2, Figure 53a]. Fig-
ure 2 shows the output of the program from the note-
book [4]: on the top, we see the simplified peculiar
module, the lower part shows its generators with their
gradings. To display the generator indices, one can
change some parameters of DotGrid and ShowGraph, or simply use ShowResult.
This is an example of the case n ≤ m+ 1 in [2, Figure 52].

Example 2.2 ((10,−5)-pretzel tangle; n = 5, m = 2). A nicefied Heegaard dia-
gram for the (10,−5)-pretzel tangle is shown in Figure 4. The calculation is done
in the notebook [3]. The top part of Figure 5 shows the simplified peculiar module,
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the lower part the generators of this module with their gradings. This is an example
of the case n > m+ 1 in [2, Figure 52].

Finally, let us include one more example for which we do not already know the
invariant.

Example 2.3 ((2,−2)-pretzel tangle). Figure 6 shows the simplified peculiar mod-
ule for the (2,−2)-pretzel tangle, which is the trivial tangle with one unknot com-
ponent winding around both strands.

3. Changelog

• 1.0 → 1.1
– Inverted the relative δ-grading, so that the conventions now agree with

those in [2].
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Figure 2. The Heegaard diagram for the (6,−9)-pretzel tangle from ex-
ample 2.1
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(a) The output of ShowGraph[DD2, GG1, 0, 0]
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(b) The output of DotGrid[GG1, 0, 0, 1]

Figure 3. The output of the program for the (6,−9)-pretzel tangle (ex-
ample 2.1) from [4]
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Figure 4. The Heegaard diagram for the (10,−5)-pretzel tangle from ex-
ample 2.2
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(a) The output of ShowGraph[DD2, GG1, 0, 0]
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(b) The output of DotGrid[GG1, 0, 0, 1]

Figure 5. The output of the program for the (10,−5)-pretzel tangle (ex-
ample 2.2) from [3]
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Figure 6. The output of ShowResult[DD2, GG1, "all"] for the (2,−2)-
pretzel tangle (example 2.3) from [6]
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