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Immersed curves for 3-manifolds with torus boundary

[Hanselman-Rasmussen-Watson'16]
( 3-dim. manifold M ) ( immersed curves* HF(M) )
with torus boundary on M minus a basepoint

gluing theorem: *) plus local systems X € GLp(Fp)
HF(MU12M") = Lagrangian Floer homology of HF(M) and HF(M")

L-space conjecture [Boyer-Gordon-Watson]

codimension 1 structures fundamental group
(taut foliations) (left-orderability)

~, 7

Heegaard Floer theory
(non-L-space)
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[2'17]

4-ended tangle T immersed curves* HFT(T)
(in a 3-dim. ball 83) ( on 0B3\ 0T

gluing theorem: *) plus local systems X € GLp(Fp)
HFL(TUT’) = Lagrangian Floer homology of HFT(T) and HFT(T")

Theorem (conjectured by Baldwin-Levine, Z'19)

dim I—TF\L(L; IF,) is invariant under Conway mutation for any link L.

Theorem (conjectured by Lidman-Moore, Lidman-Moore-Z'20)

A knot in S3 with a non-trivial L-space surgery admits no essential
Conway sphere.

Both proofs use strong geography results for components of HFT.



Comparison of the immersed curve invariants

Template (surface S, homology theory H) invariant Z
3-dim. objects X'\ . (immersed curves* Z(X)
with 0X =S8 ondX =S8
gluing theorem *) plus local systems X € GLp(k)

H(X Us X") = Lagrangian Floer homology of Z(X) and Z(X")

T =HF T =HFT
S = T2~ (1 point) S = 52 \ (4 points)
‘H = Heegaard Floer homology ‘H = Heegaard Floer homology

of closed 3-dim. manifolds of links in S3
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Conjecture

Components of Kh satisfy geography restrictions similar to HFT.
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Origins of BN and Kh

for knots and links
Khovanov and Bar-Natan homology [Khovanov, Bar-Natan]

§

for tangles
Cobordism category framework [Bar-Natan]

§

immersed curve invariants BN and Kh
Il
geometric reformulation of Bar-Natan's tangle theory
in the special case of 4-ended tangles
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