MATH 100:102 Differential Calculus
with Applications to Physical Sciences and Engineering

lecture summaries

winter term 2018/2019
Tuesdays 8:00-9:30 (Math 100) | Thursdays 8:00-9:30 (Math 100)

Claudius Zibrowius

functions and limits
Th 06/09 | 1 | Introduction to differential calculus
e What is differential calculus?
e linear functions and their slopes
e functions and their graphs (0.4)
e proposition: When is a subset of R? the graph of a function? (a.k.a. vertical line test)

e tangents and velocity (Newton’s example) (1.1-1.2)

Tu 11/09 | 2 | Limits

e Newton’s example (continued) (1.2)
e limits as a method to extend functions to where they are not defined (1.3)
e one-sided limits (1.3)

Th 13/09 | 3 | Arithmetic of limits

e limit laws (sums, differences, products, quotients, powers, roots, rational functions) (1.4)
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e Behaviours of %13% Ti), where g(a) =0 (1.4)

e Squeezing theorem and examples (1.4)

e Limits at infinity (definition only) (1.5)

Tu 18/09 | 4 | limits at co and continuity

e Limits at infinity (main trick: factor out the dominant term) (1.5)
e definition: the absolute value |z| of a real number z (1.5)
e definition and discussion: continuity (1.6)
e Intermediate Value Theorem (IVT) (1.6)
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derivatives

Th 20/09 | 5 | tangents and derivatives

e Newton’s example revisited

e definition: the derivative of a function at a point and all sorts of notation

e calculation of various derivatives: linear functions, quadratic functions

e continuity and differentiation (example)
Tu 25/09 | 6 | Arithmetic of derivatives |

e continuity and differentiation (theorem)
e computing tangents
e Derivatives of sums, products, integer powers

Th 27/09 | 7 | Arithmetic of derivatives Il

o di(a:a) = a- 2! for any rational numbers a
x

e The quotient rule as a special case of the product rule

e Derivatives of trigonometric functions (with proofs)
Tu 02/10 | 8 | Arithmetic of derivatives IlI

e The chain rule
e Derivatives of exponentials

e Inverse functions
Th 04/10 | 9 | Implicit differentiation

e Logarithms and their derivatives
e Logarithmic differentiation (differentiate log |f(z)| instead of f(x))
e Implicit differentiation

e finding tangents to curves in the plane
Tu 09/10 | 10 | Inverse trigonometric functions

e 5-minute test: (past exam question on implicit differentiation)
e Inverse trigonometric functions and their derivatives

e general epistemological remarks
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(2.4, 2.6)

(2.6)
(2.4, 2.5, 2.6)

(2.8)

(see here or here)

(2.12)


http://www.math.ubc.ca/Ugrad/pastExams/index.shtml
https://wiki.ubc.ca/Science:Math_Exam_Resources/Courses/MATH100
https://en.wikipedia.org/wiki/Epistemology

applications of derivatives

Th 11/10 | 11 | Rates of change |

e Newton’s example revisited: velocity and acceleration (3.1)

e Exponential decay: Carbon dating (3.3.1)
Tu 16/10 | 12 | Rates of change Il

e Exponential decay: Newton’s law of cooling (3.3.2)

e Exponential growth: Population growth (3.3.3)
Th 18/10 | % | mid-term exam
Tu 23/10 | 13 | Problem solving strategies

e discussion: mid-term exam question 5 (group A)/question 4 (group B)

e problem session on related rates (problem sheet) (3.2)
Th 25/10 | 14 | Taylor polynomials

e example: linear approximation of sinx at xg = 0 (3.4.2)

e example: quadratic approximation of cosx at xg =0 (3.4.3)

e polynomial approximations of differentiable functions at o = 0 (Maclaurin’s polynomial)

(3.4.4)
e exercise: ezl—i—l—l—%—ké—k%—k---—l—%.
Tu 30/10 | 15 | Taylor’s formula and remainders
e definition: Taylor polynomial as shifted Maclaurin’s polynomial (3.4.4)
e summation notation (3.4.3)
e example: Taylor’s polynomial for logz at g = 1 (3.4.5)
Th 01/11 | 16 | Maxima and minima
e (rather artificial) applications of Taylor polynomials: error estimates (3.4.6-3.4.7)
e methods for finding local maxima and minima (3.5.1)
e using second derivatives to determine the type of extrema (theorem 3.5.5)
e critical points, singular points and boundary points (3.5.1)
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https://cbz20.raspberryip.com/ana1/documents/RelatedRatesQuestions.pdf

Tu 06/11 | 17 | Mean value theorem

e theorem: global extrema on closed intervals (3.5.2)
e Le théoreme de Rolle and the mean value theorem (MVT) (2.13)
e application: The equation 2z — 1 = sin(z) has a unique solution. (example 2.13.3)

Th 08/11 | 18 | More applications of MVT and curve sketching | (asymptotes)

e corollary: f'(z) = 0, f'(z) < 0, f'(z) > 0 for all x € (a,b) implies that f(z) is constant,

decreasing, increasing on (a, b), respectively. (2.13)
e corollary: f'(z) = ¢'(x), implies f(x) = g(x) + ¢ for some constant ¢ (2.13)
e corollary. Remainder in Taylor polynomials with (non-examinable) proof using complete
induction (3.4.8)
e example: sketching rational functions (3.6)

Tu 13/11 | 19 | Curve sketching Il (first and second derivatives)

e Using the first derivative for graph sketching (example 3.6.2)
e Concavity and convexity (3.6.3)
e exercise: sketching rational functions (cp. example 3.6.14)
e example: sketching functions with singular points (example 3.6.15)

Th 15/11 | 20 | Curve sketching Ill (symmetries)

e Even and odd functions: definition and geometric interpretation (3.6.4)
e exercise: Taylor polynomials of even/odd functions

e periodicity: definition and geometric interpretation (3.6.4)
e example: Sketch y = cos?(z) + 1

e remark: All periodic functions can be written as sums of sin and cos (google Fourier series)
Tu 20/11 | 21 | Optimisation problems [lecture given by Liam Watson]

e example: optimisation of the volume of a rectangular box (example 3.5.16)

e example: minimal distance between a point and a line in the Euclidean plane (example 3.5.18)
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https://www.google.com/search?q=Fourier+series
https://www.instagram.com/mathonmydeskrightnow/

Th 22/11 | 22 | L’Héopital’s rule

e theorem: existence of extrema of continuous functions with asymptotes at the boundary of
the domain (theorem 3.5.17)

e exercise: minimal distance between a point and a curve in the Euclidean plane
(example 3.5.19)

e Translating a text question into a math question (3.5.3)
e I’Hopital’s rule for “0” and examples (3.7.1)
e warning: hm ,g ; DNE does NOT imply hm gxg =DNFE (warnings 3.7.7-3.7.9)
towards integral calculus
Tu 27/11 | 23 | Special cases of I'Hopital’s rule and a first glance at antiderivatives
e 'Hopital’s rule for “%” and examples (3.7.2a-b)
e more variations of ’'Hopital’s rule: type “0 - oo” and type “oco — 00” (3.7.2¢—d)
e even more variations of I’'Hopital’s rule: type “1%°7, type “0°” and type “oo®” (3.7.2e—g)
e definition and examples: antiderivatives (4.1)
e theorem: antiderivatives are unique up to a constant (4.1)

Th 29/11 | 24 | More on antiderivatives and review

e guessing antiderivatives by reading differentiation tables umop-opisdn (4.1
e application of antiderivatives: velocity and position (4.1.5

e application of antiderivatives: review of the exponential differential equation (4.1.6

)
)
)
)

e A physicist’s proof of the volume formula of a cone (for an alternative proof, see 4.1.7

Good luck with the exam!
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